{ "cells": [ { "cell_type": "markdown", "id": "0", "metadata": {}, "source": [ "[](https://demo.leafmap.org/lab/index.html?path=notebooks/89_image_array_viz.ipynb)\n", "[](https://colab.research.google.com/github/opengeos/leafmap/blob/master/docs/notebooks/89_image_array_viz.ipynb)\n", "[](https://mybinder.org/v2/gh/opengeos/leafmap/HEAD)\n", "\n", "**Visualizing in-memory raster datasets and image arrays**" ] }, { "cell_type": "code", "execution_count": null, "id": "1", "metadata": {}, "outputs": [], "source": [ "# %pip install \"leafmap[raster]\"" ] }, { "cell_type": "code", "execution_count": null, "id": "2", "metadata": {}, "outputs": [], "source": [ "import leafmap\n", "import rasterio\n", "import rioxarray\n", "import xarray as xr" ] }, { "cell_type": "markdown", "id": "3", "metadata": {}, "source": [ "Download two sample raster datasets." ] }, { "cell_type": "code", "execution_count": null, "id": "4", "metadata": {}, "outputs": [], "source": [ "url1 = \"https://open.gishub.org/data/raster/landsat.tif\"\n", "url2 = \"https://open.gishub.org/data/raster/srtm90.tif\"\n", "satellite = leafmap.download_file(url1, \"landsat.tif\", overwrite=True)\n", "dem = leafmap.download_file(url2, \"srtm90.tif\")" ] }, { "cell_type": "markdown", "id": "5", "metadata": {}, "source": [ "The Landsat image contains 3 bands: nir, red, and green. Let's calculate NDVI using the nir and red bands." ] }, { "cell_type": "code", "execution_count": null, "id": "6", "metadata": {}, "outputs": [], "source": [ "dataset = rasterio.open(satellite)\n", "nir = dataset.read(4).astype(float)\n", "red = dataset.read(1).astype(float)\n", "ndvi = (nir - red) / (nir + red)" ] }, { "cell_type": "markdown", "id": "7", "metadata": {}, "source": [ "Create an in-memory raster dataset from the NDVI array and use the projection and extent of the Landsat image." ] }, { "cell_type": "code", "execution_count": null, "id": "8", "metadata": {}, "outputs": [], "source": [ "ndvi_image = leafmap.array_to_image(ndvi, source=satellite)" ] }, { "cell_type": "markdown", "id": "9", "metadata": {}, "source": [ "Visualize the Landsat image and the NDVI image on the same map." ] }, { "cell_type": "code", "execution_count": null, "id": "10", "metadata": {}, "outputs": [], "source": [ "m = leafmap.Map()\n", "m.add_raster(satellite, indexes=[4, 1, 2], vmin=0, vmax=120, layer_name=\"Landsat 7\")\n", "m.add_raster(ndvi_image, colormap=\"Greens\", layer_name=\"NDVI\")\n", "m" ] }, { "cell_type": "markdown", "id": "11", "metadata": {}, "source": [ "You can also specify the image metadata (e.g., cellsize, crs, and transform) when creating the in-memory raster dataset.\n", "\n", "First, check the metadata of the origina image." ] }, { "cell_type": "code", "execution_count": null, "id": "12", "metadata": {}, "outputs": [], "source": [ "dataset.profile" ] }, { "cell_type": "markdown", "id": "13", "metadata": {}, "source": [ "Check the crs of the original image." ] }, { "cell_type": "code", "execution_count": null, "id": "14", "metadata": {}, "outputs": [], "source": [ "dataset.crs" ] }, { "cell_type": "markdown", "id": "15", "metadata": {}, "source": [ "Check the transform of the original image." ] }, { "cell_type": "code", "execution_count": null, "id": "16", "metadata": {}, "outputs": [], "source": [ "dataset.transform" ] }, { "cell_type": "markdown", "id": "17", "metadata": {}, "source": [ "Create an in-memory raster dataset from the NDVI array and specify the cellsize, crs, and transform." ] }, { "cell_type": "code", "execution_count": null, "id": "18", "metadata": {}, "outputs": [], "source": [ "transform = (30.0, 0.0, -13651650.0, 0.0, -30.0, 4576290.0)\n", "ndvi_image = leafmap.array_to_image(\n", " ndvi, cellsize=30, crs=\"EPSG:3857\", transform=transform\n", ")" ] }, { "cell_type": "markdown", "id": "19", "metadata": {}, "source": [ "Add the NDVI image to the map." ] }, { "cell_type": "code", "execution_count": null, "id": "20", "metadata": {}, "outputs": [], "source": [ "m = leafmap.Map()\n", "m.add_raster(satellite, indexes=[4, 1, 2], vmin=0, vmax=120, layer_name=\"Landsat 7\")\n", "m.add_raster(ndvi_image, colormap=\"Greens\", layer_name=\"NDVI\")\n", "m" ] }, { "cell_type": "markdown", "id": "21", "metadata": {}, "source": [ "Use rioxarray to read raster datasets into xarray DataArrays." ] }, { "cell_type": "code", "execution_count": null, "id": "22", "metadata": {}, "outputs": [], "source": [ "ds = rioxarray.open_rasterio(dem)\n", "ds" ] }, { "cell_type": "markdown", "id": "23", "metadata": {}, "source": [ "Classify the DEM into 2 elevation classes." ] }, { "cell_type": "code", "execution_count": null, "id": "24", "metadata": {}, "outputs": [], "source": [ "array = ds.sel(band=1)\n", "masked_array = xr.where(array < 2000, 0, 1)" ] }, { "cell_type": "markdown", "id": "25", "metadata": {}, "source": [ "Visualize the DEM and the elevation class image on the same map." ] }, { "cell_type": "code", "execution_count": null, "id": "26", "metadata": {}, "outputs": [], "source": [ "m = leafmap.Map()\n", "m.add_raster(dem, colormap=\"terrain\", layer_name=\"DEM\")\n", "m.add_raster(masked_array, colormap=\"coolwarm\", layer_name=\"Classified DEM\")\n", "m" ] }, { "cell_type": "markdown", "id": "27", "metadata": {}, "source": [ "Add a split map." ] }, { "cell_type": "code", "execution_count": null, "id": "28", "metadata": {}, "outputs": [], "source": [ "m = leafmap.Map(center=[37.6, -119], zoom=9)\n", "m.split_map(\n", " dem,\n", " masked_array,\n", " left_args={\n", " \"layer_name\": \"DEM\",\n", " \"colormap\": \"terrain\",\n", " },\n", " right_args={\n", " \"layer_name\": \"Classified DEM\",\n", " \"colormap\": \"coolwarm\",\n", " },\n", ")\n", "m" ] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" } }, "nbformat": 4, "nbformat_minor": 5 }